
ORNL/TM-2020/1619

VERA User’s Guide for Ex-Core
Applications

Eva Davidson

January 2022
Approved for public release.

Distribution is unlimited.

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website: http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: 703-605-6000 (1-800-553-6847)
TDD: 703-487-4639
Fax: 703-605-6900
E-mail: info@ntis.gov
Website: http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Ex-
change representatives, and International Nuclear Information System representatives from the
following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone: 865-576-8401
Fax: 865-576-5728
E-mail: report@osti.gov
Website: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal lia-
bility or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or rep-
resents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply its endorsement, recommendation, or fa-
voring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

 http://www.osti.gov/scitech/
mailto:info@ntis.gov
http://classic.ntis.gov/
mailto:reports@osti.gov
http://www.osti.gov/contact.html

ORNL/TM-2020/1619

Reactor and Nuclear Systems Division

VERA User’s Guide for Ex-core Applications

Eva Davidson

Date Published: January 2022

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-Battelle, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

CONTENTS

LIST OF FIGURES . v
LIST OF TABLES . vii
LIST OF INPUTS, OUTPUTS AND SCRIPTS . ix
ACRONYMS . xi
ACKNOWLEDGMENTS . xiii
ABSTRACT . xv
1. INTRODUCTION . 1
2. RUNNING VERA USING VERARUN . 3

2.1 SETTING UP MPACT AND SHIFT PROCESSORS . 4
3. SHIFT DEFAULT PARAMETERS . 7
4. VESSEL FLUENCE CALCULATIONS . 11
5. OTHER EX-CORE CALCULATIONS . 13

5.1 SETTING UP THE OMNIBUS EX-CORE GEOMETRY 15
5.2 A SIMPLE EX-CORE INPUT . 18
5.3 SMR EX-CORE INPUT WITH A DETECTOR . 21
5.4 AUTOMATED GENERATION OF THE BIOSHIELD AND EX-CORE DETECTORS . . . 28
5.5 RUNNING VERA WITH AN EX-CORE FILE . 32

6. PRE- AND POST-PROCESSING INPUTS AND OUTPUTS . 35
6.1 CHECKING FOR GEOMETRY ERRORS DURING EX-CORE INPUT SETUP 35
6.2 GENERATING PLOTS AFTER RUNNING VERA . 39

6.2.1 Using VERAView To Examine Pin Adjoints . 39
6.2.2 Custom Python Scripts . 40

6.3 POST-PROCESSING CELL TALLIES AFTER RUNNING VERA 42
7. CONCLUSION . 45
8. REFERENCES . 47

iii

LIST OF FIGURES

1 VERAView screen with vessel fluence output. 12
2 Example of (a) ex-core detector within a detector well in the bioshield and (b) the spatial

fission source. 13
3 Example of a geometry set up with a single surveillance capsule and a power range detector. 14
4 Full core model. 14
5 Quarter core quadrants modeled with MPACT and Shift for quarter core problems. 15
6 Simple ex-core region for an SMR. 18
7 An SMR with an ex-core detector. 21
8 Automatically generated detectors and bioshield. 30
9 An example of a plot output from plot.py. 39
10 Pin adjoint plots generated with VERAView. 40
11 Integrated in-core and ex-core geometry with the adjoint flux overlaid on the geometry. . . . 42

v

LIST OF TABLES

1 Shift default parameters . 7
2 OMNIBUS shapes . 16

vii

LIST OF INPUTS, OUTPUTS AND SCRIPTS

1 verarun arguments. 3
2 Simple vessel fluence VERA input. 11
3 VERA vessel fluence input with additional parameters. 11
4 Blocks of input in Omnibus ex-core file. 17
5 Simple ex-core file. 19
6 Ex-core file with bioshield and detector. 22
7 VERA input file for automated detector generation. 28
8 Default materials in automatically generated ex-core file. 29
9 [TALLY] block automatically generated in the ex-core file. 31
10 [SHIFT] block in VERA input for running ex-core calculations with an ex-core file. 32
11 Revised ex-core file for geometry visualization and error-checking. 35
12 Python script for geometry error-checking. 38
13 Python script for viewing the geometry and adjoint after running VERA. 41
14 Python script for viewing the geometry and adjoint after running VERA. 42

ix

ACRONYMS
CADIS Consistent Adjoint Driven Importance Sampling
EFPD effective full power day
HDF5 hierarchical data formats version 5
GG General Geometry
ORNL Oak Ridge National Laboratory
SMR small modular reactor
VERA Virtual Environment for Reactor Applications
VR variance reduction

xi

ACKNOWLEDGEMENTS

The author would like to thank Andrew Godfrey for his guidance and for providing feedback on the scripts
required for streamlining VERA ex-core calculations.

The author would also like to acknowledge the entire Exnihilo and MPACT development teams for their
patience and user support while the author ran numerous ex-core calculations. The author also appreciates
the assistance received from Tara Pandya and Katherine Royston of the Exnihilo development team in
setting up the appropriate scripts to plot and display various pieces of information from the output.

xiii

ABSTRACT

The Virtual Environment for Reactor Applications, or VERA, allows users to set up models to calculate
time-dependent and fully coupled solutions for ex-core quantities of interest such as vessel and coupon
fluence, and detector responses for multiple statepoints and cycles. MPACT and COBRA-TF together
perform in-core transport calculations with temperature feedback while Shift performs the fluence and
detector response calculations in the ex-core region. The in-core region is modeled using VERA’s native
input format and the ex-core region is defined using Shift’s general geometry package, also known as
Omnibus General Geometry. Fixed source ex-core calculations with Shift can be run in forward mode
without advanced variance reduction (VR) methods, or with Consistent Adjoint Driven Importance
Sampling (CADIS), which is an automated VR method.

This document serves as a guide for setting up inputs, running ex-core calculations and post-processing the
results.

xv

1. INTRODUCTION

Advanced simulation methods in VERA (Turner et al. [2016]) allow users to set up models to calculate
time-dependent and fully coupled solutions for coupon fluence, pressure vessel fluence, and ex-core
detector responses at multiple statepoints and for multiple cycles. The in-core transport with temperature
feedback is performed by coupled MPACT (Collins et al. [2016]) and COBRA-TF (Avramova [2009])
calculations, and the fluence and detector response calculations in the ex-core region are performed by
Shift (Pandya et al. [2016]). The ex-core region is defined using Shift’s general geometry package, also
known as Omnibus General Geometry (GG) (Johnson et al. [2020]), while the in-core geometry is defined
using the standard VERA input (Palmtag and Godfrey [2015]). Fixed source ex-core calculations in Shift
can be run in forward mode without advanced variance reduction (VR) methods, or with Consistent
Adjoint Driven Importance Sampling (CADIS) (Wagner and Haghighat [1998]), which is an automated VR
method. Space- and energy-dependent weight windows for Shift are generated using Denovo, a discrete
ordinates solver in the Oak Ridge National Laboratory (ORNL) Exnihilo code suite (Johnson et al. [2020]).

The VERA input set up to perform in-core calculations with MPACT can be used to run ex-core
calculations with Shift. Once the VERA input has been set up, no additional user effort is required to
model the core or fuel in great detail in order to perform ex-core calculations. Subsequently, vessel fluence
calculations can be performed with very little user input, but more complicated ex-core geometry must be
modeled using the GG input format.

This document serves as a user’s guide for setting up and running ex-core calculations with VERA as well
as post-processing the results.

1

2. RUNNING VERA USING VERARUN

VERA ex-core calculations can be invoked with verarun. The user can gain more information regarding
all the input arguments for verarun by typing the following into the terminal window:

verarun

This command will show the user a list of the arguments (Listing 1) and a description of what each
argument would accomplish.

Listing 1. verarun arguments.
usage: verarun [-x] [-e email_addr] [-h] [-c config_file] [-N job_name] [-l]

[-n nprocs] [-O] [--ppn cpus_per_node] [-m mem_per_process]
[-p project] [-s subdir] [-d vera_install_dir]
[-v vera_version] [--verbose] [-W] [-w job_id] [-t walltime]
[--chain] [--debug] [--hostname host]
[-r {overwrite ,readwrite}]
[--vera-installs-dir vera_installs_dir]
[input_path [input_path ...]]

Creates and optionally submits machine-specific VERA jobs.

positional arguments:
input_path path to VERA input (.inp) or XML (.xml) files

optional arguments:
-x, --dry-run dry run only, create but don’t execute the PBS script
-e email_addr , --email-addrs email_addr

comma-delimited list of email addresses to notify of
job completion , defaults to ${USER}@$(hostname)

-h, --help print detailed help
-c config_file , --host-config-file config_file

override host configuration file, supercedes
--hostname and --vera-installs -dir

-N job_name , --job-name job_name
name for the PBS job

-l, --list-vera-versions
list available VERA versions

-n nprocs, --np nprocs, --nprocs nprocs, --num-procs nprocs
total number of processors need for the job (mpiexec
-np param), defaults to value computed from input

-O, --output-job-name
print the job id to stdout

--ppn cpus_per_node , --pnode cpus_per_node
specify processors per node, by default this is
calculated

-m mem_per_process , --pmem mem_per_process , --proc-memory mem_per_process
specify memory required per processor in GB, defaults
to undefined

-p project, --project project
optional project or account to specify for the job,
overriding any default, where a value of "none" omits
a project

-s subdir, --subdir subdir

3

create subdir, a value of "." specifies automatically
generated subdir name

-d vera_install_dir , --vera-dir vera_install_dir
path to VERA installation , superseding --vera-
installs -dir, --vera-version, and the host
configuration

-v vera_version , --vera-version vera_version
name of VERA version to use

--verbose turn on verbose messaging
-W wait on job last submitted via verarun, overrides -w
-w job_id, --wait-job-id job_id

ID of job which must complete before starting this job
-t walltime , --wall-time walltime

wallclock execution time in floating point hours,
defaults to 24.0

advanced arguments:
--chain, --chain-jobs

each job depends on its predecessor
--debug debug mode
--hostname host force the hostname
-r {overwrite ,readwrite}, --restart {overwrite ,readwrite}

optional restart mode
--vera-installs -dir vera_installs_dir

path to vera_installs directory containing VERA
versions

Version 1.4

When running ex-core problems with a supplemental Omnibus ex-core file, ensure that both the VERA
input and ex-core files are in the same folder. To run Shift calculations in cadis mode, type in:
verarun vera_input_filename.inp

Note that if there is an Omnibus ex-core file, do not forget to insert excore-filename.excore.xml
within the [SHIFT] block in the VERA input using the excore_filename parameter [Pandya et al.
[2020]].

2.1 SETTING UP MPACT AND SHIFT PROCESSORS

When running ex-core calculations with VERA, the problem should be set up so that MPACT and Shift run
on different nodes. Otherwise, it is possible to run out of memory on a node if both MPACT and Shift are
sharing that node. For example, if a node has 32 processors, it is good practice to ensure that MPACT is
running on a multiple of 32 processors.

The num_space parameter in the [MPACT] block refers to the number of processors MPACT requires for
the problem, and it can be toggled to ensure that MPACT runs on its own independent nodes. The
num_blocks_i and num_blocks_j parameters in the [SHIFT] block provide information on the number
of Shift processors required. Note that these Shift parameters are associated with CADIS, and CADIS is
the default method when invoking Shift for ex-core calculations. When using verarun to run a VERA
ex-core calculation, the default number of Shift processors is 10 num_blocks_i multiplied by 10
num_blocks_j, which is equal to 100 processors for Shift. However, the user is free to run with any
combination of num_blocks_i and num_blocks_j to utilize all the processors available. It must be noted

4

that for improved performance and efficiency, it is preferable to keep the num_blocks_i equal to
num_blocks_j. The user must also bear in mind that if a cluster with 32 processors per node is being
used, and the default 100 processors is used for the Shift calculation when using verarun, then there will
be 28 processors that will not be used in the calculation.

Shift ex-core calculations can also be performed without advanced variance reduction. In this case, the user
must specify that the problem has to be run in forward mode in the [SHIFT] block. The user can state the
total number of processors required for the VERA simulation by typing the following command into the
terminal window:

verarun -n nprocs

The nprocs value is equal to the total number of MPACT and Shift processors. verarun reads the number
of MPACT processors required for the problem from the num_space input parameter within the [MPACT]
block; the remainder of the processors will be assigned to Shift.

5

3. SHIFT DEFAULT PARAMETERS

Most hybrid parameters that allow ex-core problems to run efficiently have been set as defaults in the
SHIFT.ini file in the build directory, $HOME/bin/Init. The parameters in the SHIFT.ini file have been
set to the optimum values for most problems except for a few parameters that must be specified by the user
for their specific problems. Expert users of hybrid methods can toggle some of the default parameters for
their specific models. More information regarding these parameters and other parameters for the [SHIFT]
block in the VERA input can be found in the manual by Pandya et al. [2020].

Table 1 lists the default parameters within the SHIFT.ini file (Pandya et al. [2020]).

Table 1. Shift default parameters

Parameter Default Value Value Options Description

adjoint true - Set to true if running in cadis
mode

create_unique_pins false -

Currently set to false for all
problems due to memory con-
straints. If set to true, each pin-
cell would have unique compo-
sitions

dimension 3 - Spatial dimension of the prob-
lem

do_transport true true/false

Perform Monte Carlo transport
if set to true; otherwise, exit the
calculation after performing a
raytrace of the geometry

eq_set sc -

Solution method or spatial dis-
cretization for hybrid calcula-
tion (sc = step characteristics)
for ex-core calculations

extend_axial_mesh_size 5.0 positive value Adjoint axial mesh size in ex-
core region

global_log info debug/diagnostics/ status/in-
fo/warning/ error/critical

Level of global log information

max_delta_z 5.0 User can decrease mesh size for
hybrid calculation

Maximum mesh size in z di-
rection used for hybrid calcula-
tions

mesh 1 - Number of mesh cells per pin-
cell

mode n n/np
Type of particle to transport
(neutrons/ neutrons and pho-
tons)

7

Parameter Default Value Value Options Description

Np 1000000 Positive integer Number of particles to transport

new_grp_bounds

6.0653E+06
3.6788E+06
2.3457E+06
1.6530E+06
8.2085E+05
2.4176E+04
1.0130E+02
1.0000E-05

User can specify energy group
boundaries for hybrid calcula-
tion

Collapsed group boundaries for
weight windows. Note these
values are lower energy bounds
and these default values were
obtained from BUGLE-96 neu-
tron group bounds

num_blocks_i 10 Positive integer Number of partitions (proces-
sors) in x

num_blocks_j 10 Positive integer Number of partitions (proces-
sors) in y

num_groups 8
User can specify number of en-
ergy groups for hybrid calcula-
tion

Number of energy groups

output_adjoint false true/false
Output adjoint flux to Shift
HDF5 file and adjoint source to
a separate HDF5 file

output_external_source false - Placeholder for future capabil-
ity to add external source

output_fission_source true true/false Output the initial fission source
for each calculation

output_geometry true true/false
Output HDF5 files of raytraced
geometry and compositions for
each state

Pn_order 0 Higher orders allowed and lim-
ited by memory

Order of moments: going to
higher orders will require more
memory

problem_mode cadis forward/cadis Run with (cadis) or without
(forward) hybrid capability

refl_mesh_size 5.0 Positive value Radial mesh size in ex-core re-
gion

src_disc_l2_error 1e-3 Advanced user can toggle this
option

Maximum L2 error for point-
sampling discretization

src_disc_max_samples 1000000000 Advanced user can toggle this
option

Maximum number of dis-
cretization samples

src_disc_samples_per_batch 10000000 Advanced user can toggle this
option

Maximum number of dis-
cretization samples

store_fulcrum_string false - Save fulcrum string as file

8

Parameter Default Value Value Options Description

thermal_energy_cutoff 10.0 - Cutoff for treatment of
thermal neutrons

transfer fiss_src -
Information transferred from
MPACT to Shift (currently the
option for ex-core calculations)

transport ce - Continuous energy (only option
for ex-core calculations)

upscatter_subspace_size 20 User can specify a higher value Upscatter solver subspace size

upscatter_verbosity high - Log verbosity for up-
scatter solver

use_external_source false -
Placeholder for future capabil-
ity that indicates an external
source is being used

use_fission_source true - Flag that indicates a fission
source is being used

use_mpact_spectrum false true/false

Flag for whether to use the
MPACT fission source energy
spectrum to sample for neu-
tron source energies: if false, a
nuclide-watt spectrum is used;
the neutron source energies are
assumed to have 235U, 238U,
239Pu, 241Pu Watt spectra based
on the fission source strength of
these isotopes

verbosity low none/low/medium/high

Specify how often to print out
particles being transported: low
means less output, and high
means more output

xs_library v7-56 - Name of SCALE multigroup
data library file

9

4. VESSEL FLUENCE CALCULATIONS

Running vessel fluence simulations with VERA is the simplest application for performing ex-core
calculations based on the minimal effort required by the user to set up an input. Consider a VERA input
that was previously set up or run with other physics options in VERA. A user can perform a vessel fluence
calculation on the same input if an additional line is added to the first state block in the VERA input.

[STATE]
excore_transport on

Next, a user must provide more information regarding the number of meshes and the number of particles
they want to run for the vessel fluence calculation using the [SHIFT] block in the VERA input. This input
block can be added at the end of the VERA input file. Note that these vessel fluence calculations are run
without the bioshield.

As an example, let us review the following input:

Listing 2. Simple vessel fluence VERA input.
[SHIFT]
Np 50e6
!
! tally_information
n_bounds 2.0e7 1.0e6
num_theta 128
num_axial 10
radial_mesh 0 61.99999 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.00001

This input shows that this particular case will be run with 50 million particles, and the energy bounds on
the tally will range from 2.0 × 107 eV to 1.0 × 106 eV. The energy bounds must be supplied in descending
order. There are 128 meshes along theta and 10 axial meshes. The bounds of the radial mesh are provided
from 0 cm to the outer extent of the vessel. The radial mesh must always start with 0 cm, which is the
origin. The second value is then the inner radius of the vessel liner or vessel, whichever the user prefers.

The user can add additional inputs that were provided in the previous Shift default parameters section to
their [SHIFT] block. In the following input, the output_adjoint parameter is set to true so that the user
can use the python post-processors available with VERA to visualize the adjoint. The default number of
processors that a Shift calculation runs on is 100 processors. This can be changed to 400 processors or any
other number, as the user prefers. In the input below, the Shift calculation will be performed on 400
processors (20 × 20).

Listing 3. VERA vessel fluence input with additional parameters.
[SHIFT]
Np 50e6 ! # of particles (Default: 1,000,000 particles)
output_adjoint true ! Produces HDF5 file with the adjoint
num_blocks_i 20 ! Denovo decomposition in x direction
num_blocks_j 20 ! Denovo decomposition in y direction
!
! tally_information
n_bounds 2.0e7 1.0e6
num_theta 128
num_axial 10

11

radial_mesh 0 61.99999 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.00001

After the Shift parameters are added, the input is ready to be run using verarun. Once the run is complete,
the output can be viewed in VERAView by clicking on Load Single New File and selecting the HDF5
output file that ends in your input_filename.h5. Note that there are several HDF5 output files in the run
folder; however, the output read by VERAView is the input_filename.h5.

Once the file is loaded, the following screen will be displayed.

Figure 1. VERAView screen with vessel fluence output.

In this figure, the plot on the left shows the radial view of the pin powers and the vessel flux, while the plot
on the right shows an axial view of the pin powers and vessel flux with two different color maps shown for
pin powers and the vessel flux. Sliding the bar at the bottom of the screen allows the user to toggle between
different statepoints, and sliding the bar at the top of the screen can be used to change the angle. The bar on
the right-hand side can be used to toggle between different axial planes. The user can view the vessel
fluence or flux by clicking on the "hamburger" icon on the top right corner of the screen and selecting the
data to plot. Note that in the figure generated by VERAView, the vessel is not presented at scale and looks
like it is really far away from the reactor. VERAView also does not plot the core pads.

12

5. OTHER EX-CORE CALCULATIONS

To perform ex-core calculations such as detector response beyond the pressure vessel or coupon fluence
calculations, the user must set up a separate input to define the ex-core geometry using Omnibus input
format. This process enables the user to set up a detailed core model using VERA and to integrate this core
model with the Omnibus geometry to define the ex-core problem. Setting up an Omnibus input can be as
simple or as complex as the geometry for the region the user is interested in studying. The Omnibus
geometry package is called General Geometry (GG), and it is based on the concept of geometric primitives
combined with unions and intersections. If the user is familiar with SCALE’s KENO or Monte Carlo
N-Particle (MCNP) code, then GG-based input should not present a steep learning curve. Figure 2 below
shows an ex-core detector response problem set up for Shearon Harris [Smith et al. [2018] and Davidson
et al. [2020]]. Figure 3 shows coupons in single surveillance capsules modeled for Watts Bar Unit 1
[Davidson et al. [2018]. Figure 4 shows a full core Watts Bar model [Davidson et al. [2018] with all the
ex-core detectors (power range and source range) and surveillance capsules (single and double) off the
pads.

(a) Ex-core geometry with detector and detector well (b) Fission source

Figure 2. Example of (a) ex-core detector within a detector well in the bioshield and (b) the spatial
fission source.

13

(a) Coupons (b) Single surveillance capsule and detector

Figure 3. Example of a geometry set up with a single surveillance capsule and a power range detector.

Figure 4. Full core model.

14

5.1 SETTING UP THE OMNIBUS EX-CORE GEOMETRY

As mentioned earlier, the effort required to set up the ex-core input depends on the complexity of the
ex-core region’s geometry that the user wants to model. In this section, the steps required to set up the
ex-core geometry and any potential user pitfalls are discussed.

Shift does not support rotational symmetry through VERA: it only supports mirror symmetry. Therefore,
any VERA input with rotational symmetry must be unfolded manually by the user in the input before
running VERA for ex-core calculations. Another quirk to note is that MPACT and Shift model different
quadrants when running quarter core problems. This can be a major source of user input error if the user
adds features to the ex-core geometry when running a quarter core model with VERA, especially if the
ex-core features are not symmetrical. The difference in these quadrants being modeled is shown in Figure 5.

(a) MPACT quadrant (b) Shift quadrant

(c) Location of ex-core feature in MPACT quadrant (d) Location of ex-core feature in Shift quadrant

Figure 5. Quarter core quadrants modeled with MPACT and Shift for quarter core problems.

An Omnibus input file requires several blocks of input (Listing 4). Detailed information regarding the set
up of Omnibus inputs can be found in the Exnihilo manual (Johnson et al. [2020]). However, the process to
set up an Omnibus GG input is revisited here for the purposes of setting up an input for VERA ex-core
calculations.

15

The input always starts with the [GEOMETRY] block, which tells Omnibus that the input following this
block of text will be geometry related. The global parameter is followed by a short string describing the
type of geometry being set up in the input file. Next, the user must provide one standard line of input,
[UNIVERSE=core reactor], that incorporates the VERA core geometry within the Omnibus input.

Once the VERA core geometry has been incorporated, the boundaries are defined for the entire ex-core
geometry. A boundary box is sufficient in most cases, and this bounding box is defined using the cuboid
shape in Omnibus. This boundary box must be a cuboid and cannot be another shape because Shift in
VERA cannot apply a boundary condition to any other shapes.

Once the boundary is defined, the shapes within the excore universe are defined: coupons, detectors etc. A
complete list of shapes and their definitions are inluded in the Exnihilo manual (Johnson et al. [2020]).
Table 2 summarizes the shapes available through the Omnibus input format.

Table 2. OMNIBUS shapes
[SHAPE=TYPE] DESCRIPTION
CUBOID/BOX Box
SPHERE Sphere
CYL Cylinder

CYLSEGMENT/PAD Cylindrical segment
RING/CYLSHELL Cylindrical shell

PRISM Regular prism
SLAB Infinite slab
PLANE Infinite half-space
WEDGE Wedge
CONE Cone

ELLIPSOID Ellipsoid
HOPPER Hopper
RIGHTHET Right tetrahedron
TRIPRISM Triangular prism
ECYLINDER Elliptical dodecahedron
RHOMBDOD Rhombic dodecahedron
PPIPED Parallelepiped
QUADRIC General quadric

After the shapes are defined, holes must be defined to incorporate the core universe from the VERA input
or to include any detectors that might have been set up as an independent universe. These holes contain
independent universes defined within the global geometry.

The cell definitions follow the hole definitions. All cells can be defined using combinatorial geometry.
More examples of this are presented in subsequent sections. The user must bear in mind that there are two
“cutoff” points in the radial direction for importing the geometry from the VERA input. The user has the
choice of importing the geometry up to (1) the outer radius of the barrel, or (2) the outer radius of the
pressure vessel, and then modeling everything beyond that point in the Omnibus ex-core file. For example,
the user might consider importing up to the outer radius of the barrel from the VERA input and then
modeling everything beyond it in the Omnibus ex-core file to model the coupons and surveillance capsules.
In another scenario, a user might want to import everything up to the outer radius of the pressure vessel
from the VERA input and then add features beyond the vessel such as a bioshield or ex-core detectors in
the Omnibus ex-core file. In the axial direction, the user must ensure that the extents in the z-direction for

16

the boundary box extend at least from the bottom of the lower core plate to the top of the upper core plate.
Note that all the regions within the boundary box must be defined. A simple Omnibus ex-core input is
presented in Section 5.2, but the main pieces of an Omnibus ex-core input are shown below. The [COMP],
[RESPONSE] and [TALLY] blocks will be discussed in more detail in the following subsections.

Listing 4. Blocks of input in Omnibus ex-core file.
! Every Omnibus GG input begins with the [GEOMETRY] block

[GEOMETRY]
global "ex-core file for an awesome reactor"

! Incorporate core from VERA input - this line never changes
[UNIVERSE=core reactor]

! --
! Define the ex-core universe with boundary - in this case a bounding box

[UNIVERSE=general excore]
boundary "box"

! Boundary box
[UNIVERSE][SHAPE=cuboid box]
faces -190 190 -190 190 -6 250

! ***
! Define other shapes within this bounding box

! Outer radius of the barrel or vessel
[UNIVERSE][SHAPE=cyl outer_radius_barrel_or_vessel]
radius 220.0
extents -6.0 240.0
origin 0 0 0
axis z

! --
! After all shapes are defined, a hole is defined to insert the VERA "reactor"
! core defined earlier

[UNIVERSE][HOLE thecore]
fill reactor
translate -outer_radius_barrel_or_vessel -outer_radius_barrel_or_vessel 0.0

! --
! Define the cells

[UNIVERSE][CELL void]
comp void
shapes +outer_radius_vessel -shield_inner_diameter

! --
! Define the compositions

[COMP]

[COMP][MATERIAL al]

17

matid 0
temperature 293
zaid 13027
nd 6.0E-02

! --
! Set up a response block to look at a specific detector response

[RESPONSE=xs]
name boron
mt 101
nuclide 5010
physics ce
particle_type n
tmp 293

! --
! Set up tallies
[TALLY]

[TALLY][CELL flux_tally]
cells void
reactions flux

5.2 A SIMPLE EX-CORE INPUT

An example of a simple input for an SMR ex-core region as shown in Figure 6 is defined in this section. In
this example (Listing 5), everything up to the outer radius of the vessel is pulled in from the VERA input.
Only a biological shield is defined outside the vessel using the ex-core input shown below.

Figure 6. Simple ex-core region for an SMR.

In this input, the global "excore" geometry is defined. Next, the general universe is defined with a

18

boundary box that encompasses the entire geometry. Following this definition, the shapes are defined for
the bioshield. Note that all geometry up to the outer radius of the vessel is being pulled from the VERA
input. Therefore, no additional geometry definitions within the vessel region need to be defined in the
Omnibus input file. The HOLE is defined next to integrate the VERA core geometry with the excore
universe defined here. Since the VERA and Omnibus origins are not the same, they must be aligned and
this alignment is achieved with a translate parameter. This is based on the outer radius of the vessel in
this problem and is defined as follows:

translate -outer_radius_of_the_vessel -outer_radius_of_the_vessel 0.0

The holes must be defined after the shape definitions, and this order matters in Omnibus GG. The [CELL]
block is defined next using the shapes defined earlier. Any region lying within the surface or has a negative
sense to a plane is defined by a negative (-) sign and any region lying outside a surface or has a positive
sense to a plane is defined by a positive (+) sign. Next, the compositions and tallies are defined using the
[COMP] and [TALLY] blocks. An example for a cell flux tally in the bioshield region is shown. The user
can define as many neutron energy bins as desired if they want to tally binned flux; otherwise, the user can
omit this line to tally the total flux in the cell.

Listing 5. Simple ex-core file.
! ==
! SIMPLE SMALL MODULAR REACTOR EX-CORE REGION
! ==

[GEOMETRY]
global "excore"

! Reactor core from VERA input inserted into this universe
[UNIVERSE=core reactor]

! -------------------------- UNIVERSE: EX-CORE -------------------------------

! **
! Define the problem boundary
[UNIVERSE=general excore]
boundary "box"

! boundary box
[UNIVERSE][SHAPE=cuboid box]
faces -190 190 -190 190 -6 250

! **
! Define the shapes (or surfaces in MCNP/KENO terminology)
! Vessel radius is 112.79 and all the surfaces outside the vessel is defined

! Shield
[UNIVERSE][SHAPE=cyl shield_id]
radius 120.4
extents -6.0 240.0
origin 0 0 0
axis z

[UNIVERSE][SHAPE=cyl shield_od]
radius 186.67

19

extents -6.0 240.0
origin 0 0 0
axis z

! **
! Create a hole and fill in universes defined outside of the
! [UNIVERSE=general excore]. In this example, there is only one universe,
! which is the VERA core model. Everything up to the outer radius of the
! vessel, which is defined in the VERA geometry, is dropped in this "hole."
! **

[UNIVERSE][HOLE thecore]
fill reactor
translate -112.79 -112.79 0.0

! Define cells

[UNIVERSE][CELL void_reg1]
comp void
shapes +thecore -shield_id

[UNIVERSE][CELL bioshield]
comp concrete
shapes +thecore +shield_id -shield_od

[UNIVERSE][CELL void_reg2]
comp void
shapes +thecore +shield_id +shield_od -box

! ------------------------------ COMPOSITIONS -------------------------------

[COMP]

[COMP][MATERIAL void]
matid 0
temperature 293
zaid --
nd --

! Concrete, Oak Ridge (ORNL) 2.3 g/cm3 material data from PNNL 15870 Rev 1
! The density specified above is estimated to be accurate to 2 significant digits.
! Uncertainties are not addressed. The following data were calculated from the
! input weight and converted to number densities.
[COMP][MATERIAL concrete]
matid 1
temperature 293
zaid 1001 1002 6012 6013 8016 8017 11023 12024 12025 12026 13027 14028

14029 14030 19039 19040 19041 20040 20042 20043 20044 20048 26054 26056
26057 26058

nd 8.49996E-03 1.70019E-06 1.99790E-02 2.24257E-04 3.54247E-02 8.52237E-05
1.63354E-05 1.46966E-03 1.86056E-04 2.04848E-04 5.55961E-04 1.56827E-03
7.95785E-05 5.25422E-05 3.76029E-05 4.03217E-09 2.71356E-06 1.07627E-02
7.21657E-05 1.55434E-05 2.32041E-04 2.10946E-05 1.12950E-05 1.77148E-04
4.09321E-06 5.40617E-07

20

! --------------------------------- TALLIES ---------------------------------
[TALLY]

! Tally the cell flux in the bioshield
[TALLY][CELL flux_tally]
reactions flux
cells bioshield
nbins 20e6 1e5 1 1e-5

5.3 SMR EX-CORE INPUT WITH A DETECTOR

An example of a slightly more complex ex-core input for a small modular reactor (SMR) shown in Figure 7
is defined in this section. A detector well is modeled in the ex-core region in this model.

Figure 7. An SMR with an ex-core detector.

See Listing 6 for the Omnibus input. The first step in setting up the ex-core geometry is to define the
[GEOMETRY] block and to also integrate the VERA core geometry with the ex-core geometry using the
[UNIVERSE=core reactor] block. Next, a separate universe that defines the detector region in the
northeast quadrant is set up. This universe is called det_cutout and has a boundary shape called
shield_id. Under the SHAPE (or surface) definitions, it can be seen that shield_id is a ring shape, and
the detector lies within this ring. The ring’s inner and outer radii are the inner and outer radii of the
bioshield. The detector well region is defined by the cuboid shape, which is cut by the ring, giving it the
detector well shape. The detector is split into top and bottom halves, and a pipe surrounds the detector that
extends the entire length of the top and bottom halves. After the shapes are defined in the det_cutout
universe, the cells are defined. Finally, the hole_boundary for the det_cutout universe must be defined.
The universe lies within the shield_id boundary.

After the det_cutout universe has been defined, the excore universe is outlined. This universe contains a
boundary box shape that encompasses the entire geometry. In this example, the geometry up to the outer

21

radius of the barrel from the VERA input is integrated into this ex-core file. All regions beyond the barrel
are defined in the excore universe. This means that the pads, reactor pressure vessel liner, and vessel in the
ex-core file must be redefined in the ex-core file. This gives the user the flexibility to add surveillance
capsules off the pads or within the vessel itself, or it allows the user to expand the ex-core region beyond
the vessel to add the bioshield and to add a detector, as in this case.

After the boundary for the problem has been defined, the next step is to define all the shapes to be
represented in the ex-core geometry. After the shape definitions, the HOLES are defined to integrate the
universes defined earlier within the excore universe. In this example, the reactor universe represent the
VERA geometry and the detector_cutout universe representing the detector well and the detector are
inserted within the excore universe. The reactor universe is translated within thecore hole because the
origin of the VERA geometry and the Omnibus geometry must align. This translation is based on the outer
radius of the barrel for this problem and is defined as follows:

translate -outer_radius_of_the_barrel -outer_radius_of_the_barrel 0.0

The holes must be defined after the shape definitions, and this order matters in Omnibus GG. Next, the
cells are defined. All regions inside a surface is defined by the minus (-) symbol, and all regions outside a
surface are defined by the plus (+) symbol. For example, the moderator region is defined by all of the
region outside the VERA geometry that is defined by +thecore, inside the reactor vessel liner
(-rpv_liner), and outside the surfaces defining the pads (+pad_ne +pad_nw +pad_sw +pad_se). The
user must keep in mind that all the regions extending up to the problem boundary, which are defined as box
in this case, must be defined using cells.

After all the shapes have been defined, the next block is the [COMP] blocks in which the compositions are
defined. Note that these compositions are referenced in each cell that was defined earlier to specify the
material in that cell.

The [RESPONSE] blocks are defined next, and here, any specific types of responses related to dose or
reaction rates are specified. The example here sets up a response for fission reactions in 235U. The user can
also specify the associated MT values from the ENDF files here. This response can then be used within the
[TALLY] block that is set up next to calculate the detector response. Different types of [RESPONSE] blocks
can be found in the Johnson et al. [2020].

Listing 6. Ex-core file with bioshield and detector.
! ==
! MORE COMPLEX SMR EX-CORE REGION
! ==
[GEOMETRY]
global "excore"

! Reactor core from VERA input inserted into this universe
[UNIVERSE=core reactor]

! ==
! UNIVERSE: DETECTOR - NE QUADRANT
! ==

[UNIVERSE=general det_cutout]
boundary shield_id

22

! ******* SHAPE DEFINITIONS FOR DETECTOR IN THE NE QUADRANT *******

[UNIVERSE][SHAPE=ring shield_id]
ri 120.4
ro 186.67
extents -6 240.0
origin 0 0 0

! Detector well
[UNIVERSE][SHAPE=cuboid void_reg]
xmin 60.0
xmax 101.0
ymin 60.0
ymax 101.0
zmin 20.0
zmax 220.0

[UNIVERSE][SHAPE=cyl det_tube_id_bot]
radius 3.73
extents 20.0 120.0
origin 93.62 93.62 0
axis z

[UNIVERSE][SHAPE=cyl det_tube_id_top]
radius 3.73
extents 120.0 220.0
origin 93.62 93.62 0
axis z

! Detector Pipe
[UNIVERSE][SHAPE=cyl det_pipe_od]
radius 4.67
extents 20.0 220.0
origin 93.62 93.62 0
axis z

! ******** CELL DEFINITIONS FOR DETECTOR IN THE NE QUADRANT *****

[UNIVERSE][CELL detector_top]
comp void
shapes -det_tube_id_top

[UNIVERSE][CELL detector_bot]
comp void
shapes -det_tube_id_bot

[UNIVERSE][CELL detector_housing]
comp ss
shapes +det_tube_id_top +det_tube_id_bot -det_pipe_od

[UNIVERSE][CELL void]
comp void
shapes -shield_id -void_reg +det_pipe_od

[UNIVERSE][CELL shield]
comp concrete

23

shapes -shield_id +void_reg

[UNIVERSE][CELL hole_boundary]
comp concrete
shapes -shield_id

! ==
! UNIVERSE: EX-CORE
! ==

! ***************** DEFINE PROBLEM BOUNDARY ****************

! Define the problem boundary
[UNIVERSE=general excore]
boundary "box"

! boundary box
[UNIVERSE][SHAPE=cuboid box]
faces -190 190 -190 190 -6 250

! ********************* DEFINE SHAPES **********************

! Pads
[UNIVERSE][SHAPE=cylsegment pad_ne]
angle 0.06944444
inner_radius 90.832
outer_radius 94.094
arc 0.08888889
extents -6.0 240.0
origin 0 0 0

[UNIVERSE][SHAPE=cylsegment pad_nw]
angle 0.33472222
inner_radius 90.832
outer_radius 94.094
arc 0.08888889
extents -6.0 240.0
origin 0 0 0

! Pads
[UNIVERSE][SHAPE=cylsegment pad_ne]
angle 0.06944444
inner_radius 90.832
outer_radius 94.094
arc 0.08888889
extents -6.0 240.0
origin 0 0 0

[UNIVERSE][SHAPE=cylsegment pad_nw]
angle 0.33472222
inner_radius 90.832
outer_radius 94.094
arc 0.08888889
extents -6.0 240.0
origin 0 0 0

24

! RPV
[UNIVERSE][SHAPE=cyl inner_vessel]
radius 102.53
extents -6.0 240.0
origin 0 0 0
axis z

[UNIVERSE][SHAPE=cyl outer_vessel]
radius 112.79
extents -6.0 240.0
origin 0 0 0
axis z

! Shield
[UNIVERSE][SHAPE=cyl shield_id]
radius 120.4
extents -6.0 240.0
origin 0 0 0
axis z

[UNIVERSE][SHAPE=cyl shield_od]
radius 186.67
extents -6.0 240.0
origin 0 0 0
axis z

! ***************** CREATE HOLES AND FILL WITH UNIVERSES *******************

! The translate card corresponds to the outer radius of the barrel.
! The translation must be performed so that origins of the VERA geometry and
! the Shift excore geometry are aligned.

[UNIVERSE][HOLE thecore]
fill reactor
translate -90.38 -90.38 0.0

[UNIVERSE][HOLE detector_cutout]
fill det_cutout

! ***************************** DEFINE CELLS *******************************

[UNIVERSE][CELL moderator]
comp mod
shapes +thecore -rpv_liner +pad_ne +pad_nw +pad_sw +pad_se

[UNIVERSE][CELL pad_ne]
comp ss
shapes -pad_ne

[UNIVERSE][CELL pad_nw]
comp ss
shapes -pad_nw

[UNIVERSE][CELL pad_sw]
comp ss
shapes -pad_sw

25

[UNIVERSE][CELL pad_se]
comp ss
shapes -pad_se

[UNIVERSE][CELL rpv_liner]
comp ss
shapes +rpv_liner -inner_vessel

[UNIVERSE][CELL rpv]
comp cs
shapes +inner_vessel -outer_vessel

[UNIVERSE][CELL void_reg1]
comp void
shapes +outer_vessel -shield_id

[UNIVERSE][CELL bioshield]
comp concrete
shapes +shield_id -shield_od +detector_cutout

[UNIVERSE][CELL void_reg2]
comp void
shapes +thecore +outer_barrel +rpv_liner +inner_vessel +outer_vessel

+shield_id +shield_od -box

! ==
! DEFINE THE COMPOSITIONS
! ==
[COMP]

[COMP][MATERIAL void]
matid 0
temperature 293
zaid --
nd --

! from page 114 of CASL progression problems (CASL-U-2012-0131-004)
[COMP][MATERIAL ss]
matid 1
temperature 293
zaid 6000 14028 14029 14030 15031 24050 24052 24053 24054 25055

26054 26056 26057 26058 28058 28060 28061 28062 28064
nd 3.20895E-04 1.58197E-03 8.03653E-05 5.30394E-05 6.99938E-05

7.64915E-04 1.47506E-02 1.67260E-03 4.16346E-04 1.75387E-03
3.44776E-03 5.41225E-02 1.24992E-03 1.66342E-04 5.30854E-03
2.04484E-03 8.88879E-05 2.83413E-04 7.21770E-05

! from page 114 of CASL progression problems (CASL-U-2012-0131-004)
[COMP][MATERIAL mod]
matid 2
temperature 293
zaid 1001 8016 5010 5011
nd 6.667279121238251E-02 3.333639560619125E-02 3.325516211867062E-05

1.338562053118350E-04

26

! from page 114 of CASL progression problems (CASL-U-2012-0131-004)
[COMP][MATERIAL cs]
matid 3
temperature 293
zaid 6000 26054 26056 26057 26058
nd 3.93598E-03 4.89841E-03 7.68945E-02 1.77583E-03 2.36330E-04

! Concrete, Oak Ridge (ORNL), 2.3 g/cm3 material data from PNNL 15870 Rev 1
! The above density is estimated to be accurate to 2 significant digits.
! Uncertainties are not addressed. The following data were calculated from the
! input weight and converted to number densities.

[COMP][MATERIAL concrete]
matid 4
temperature 293
zaid 1001 1002 6012 6013 8016 8017 11023 12024 12025 12026

13027 14028 14029 14030 19039 19040 19041 20040 20042 20043
20044 20048 26054 26056 26057 26058

nd 8.49996E-03 1.70019E-06 1.99790E-02 2.24257E-04 3.54247E-02
8.52237E-05 1.63354E-05 1.46966E-03 1.86056E-04 2.04848E-04
5.55961E-04 1.56827E-03 7.95785E-05 5.25422E-05 3.76029E-05
4.03217E-09 2.71356E-06 1.07627E-02 7.21657E-05 1.55434E-05
2.32041E-04 2.10946E-05 1.12950E-05 1.77148E-04 4.09321E-06
5.40617E-07

!############################### RESPONSES ###################################

[RESPONSE=xs]
name U235resp
mt N_FISSION
nuclide 92235
physics ce
particle_type n
tmp 293

! ==
! DEFINE THE TALLIES
! ==
[TALLY]

[TALLY][CELL flux_tally]
reactions flux
cells detector_top:detector_bot

[TALLY][CELL detTop_tally]
cells detector_top
responses U235resp

[TALLY][CELL detBot_tally]
cells detector_bot
responses U235resp

27

5.4 AUTOMATED GENERATION OF THE BIOSHIELD AND EX-CORE DETECTORS

VERA can generate an automated detector input, which is in an Omnibus ex-core file format (*.omn), so
that the user does not have to manually create an ex-core input file from scratch. This is a good way to start
learning how to generate an ex-core file for a user unfamiliar with how to set up an Omnibus GG input.

The [CORE] block in the VERA input needs some additional user input regarding the bioshield and the
detector (see Listing 7). Let us assume in this example that the height of the active core region (from the
top of the bottom core plate to the bottom of the upper core plate) is 240 cm. Therefore, the mid-plane of
the active core region is at z=120 cm. A bioshield is first set up, and it extends radially from 120.0 cm to
250 cm. Following this definition, there are four types of detectors that are set up in six different locations.

Listing 7. VERA input file for automated detector generation.
vessel mod 87.71 ! barrel IR (cm)

ss 90.38 ! barrel OR (cm)
mod 102.27 ! vessel liner IR (cm)
ss 102.53 ! vessel liner OR / vessel IR (cm)
cs 112.79 ! vessel OR (cm)

bioshield void 120.0 ! void region between vessel and inner radius of bioshield
concrete 250.0 ! outer radius of bioshield

! ID type radii / mats / heights / response_type [well_type]
! --
det PWR1 power 2.0 3.0 / void ss/ 70.0 70.0 / b10 wedge
det PWR2 power 2.0 3.0 / void ss/ 70.0 70.0 / b10 none
det SRC1 source 1.5 3.0 / void ss/ 50.0 / u235 wedge
det SRC2 source 1.5 3.0 / void ss/ 70.0 / u235 none

! ID, radius, degree, elevation
! ---
det_locations PWR1 123.0 315 50.0

PWR2 116.39 45 50.0
PWR2 116.39 0 50.0
SRC1 123.0 135 95.0
SRC1 123.0 270 95.0
SRC2 123.0 225 85.0

The four types of detectors that are set up are addressed first. The user must first up a detector using the
parameter det, and then the user must provide the detector ID, such as PWR1. The detector ID can be any
string that the user would like to specify. The detector type is defined after the detector ID. The two types
of detectors are power for power range detectors and source for source range detectors. Next, the user has
to enter the radius of the detector followed by the radius of the metal casing around the detector. Note that
the user can enter as many concentric rings within the detector as needed. For example, the user can
specify an inner void region followed by an aluminum casing, and then another void region and an outer
steel casing. Once the radii have been defined, the user can specify the materials in each region. In this
case, the inner region is void, and the outer region is ss. The default compositions available for the
automated detector set up are provided in the ex-core manual Pandya et al. [2020], and is also provided in
Listing 8 for completeness.

28

Listing 8. Default materials in automatically generated ex-core file.
[COMP]

[COMP][MATERIAL void]
matid 0
temperature 293
zaid --
nd --

! from page 114 of CASL progression problems (CASL-U-2012-0131-004)
[COMP][MATERIAL ss]
matid 1
temperature 293
zaid 6000 14028 14029 14030 15031 24050 24052 24053 24054 25055

26054 26056 26057 26058 28058 28060 28061 28062 28064
nd 3.20895E-04 1.58197E-03 8.03653E-05 5.30394E-05 6.99938E-05

7.64915E-04 1.47506E-02 1.67260E-03 4.16346E-04 1.75387E-03
3.44776E-03 5.41225E-02 1.24992E-03 1.66342E-04 5.30854E-03
2.04484E-03 8.88879E-05 2.83413E-04 7.21770E-05

! from page 114 of CASL progression problems (CASL-U-2012-0131-004)
[COMP][MATERIAL mod]
matid 2
temperature 293
zaid 1001 8016 5010 5011
nd 6.667279121238251E-02 3.333639560619125E-02 3.325516211867062E-05

1.338562053118350E-04

! from page 114 of CASL progression problems (CASL-U-2012-0131-004)
[COMP][MATERIAL cs]
matid 3
temperature 293
zaid 6000 26054 26056 26057 26058
nd 3.93598E-03 4.89841E-03 7.68945E-02 1.77583E-03 2.36330E-04

! Concrete, Oak Ridge (ORNL), 2.3 g/cm3 material data from PNNL 15870 Rev 1
! The density specified above is estimated to be accurate to 2 significant digits.
! Uncertainties are not addressed. The following data were calculated
! from the input weight and converted to number densities.
[COMP][MATERIAL concrete]
matid 4
temperature 293
zaid 1001 1002 6012 6013 8016 8017 11023 12024 12025 12026

13027 14028 14029 14030 19039 19040 19041 20040 20042 20043
20044 20048 26054 26056 26057 26058

nd 8.49996E-03 1.70019E-06 1.99790E-02 2.24257E-04 3.54247E-02
8.52237E-05 1.63354E-05 1.46966E-03 1.86056E-04 2.04848E-04
5.55961E-04 1.56827E-03 7.95785E-05 5.25422E-05 3.76029E-05
4.03217E-09 2.71356E-06 1.07627E-02 7.21657E-05 1.55434E-05
2.32041E-04 2.10946E-05 1.12950E-05 1.77148E-04 4.09321E-06
5.40617E-07

! Aluminum
[COMP][MATERIAL al]
matid 5
temperature 293
zaid 13027
nd 6.02626E-02

29

After the material has been defined, the user must specify the height of the detector. The height can be
divided into two axial regions with top and bottom halves, as in the case of PWR1 and PWR2, or the detector
can have one axial region, as in the case of SRC1 and SRC2. After the detector height is specified, the
response type must be specified. The detector can be set up with absorption reactions in 10B or fission
reactions in 235U. Finally, the detector well type is specified. A wedge-shaped well can be specified, or the
detector can be defined without a well.

Then the detector locations for each of the detector types are provided with radius and degrees. Note that
when defining the degrees, the user must bear in mind that 0 to 90◦ refers to the southeast quadrant, 90 to
180◦ is the southwest quadrant, 180 to 270◦ is the northwest quadrant, and 270 to 360◦ refers to the
northeast quadrant. The elevation of the detector refers to the distance from z=0 cm, which is the top of the
bottom core plate to the bottom of the detector if there is only one axial region in the detector. Or, if there
are two axial regions, then it refers to the distance from the top of the bottom core plate to the bottom of the
detector located in the lowest axial region. In this example, the mid-plane of the core is at z=120 cm, so for
the PWR1 and PWR2 detectors, the elevation is 50 cm (120 minus 70 cm). The elevation for SRC1 is 95 cm
(120 minus 25 cm), and the elevation for SRC2 is 85 cm (120 minus 35 cm), which makes them
axisymmetric about the core mid-plane. A plot of the detectors is shown in Figure 8.

(a) Detectors and bioshield (b) Close-up view of the detectors

Figure 8. Automatically generated detectors and bioshield.

The next step is to ensure that in the [SHIFT] block of the VERA input file, the parameter
vera_pressure_vessel is set to true, and the core_translate parameter corresponds to the outer
radius of the reactor pressure vessel and is set to the following:

vera_pressure_vessel true
core_translate -outer_radius_of_vessel -outer_radius_of_vessel 0.0

More details regarding the set up of the [SHIFT] block are provided in Section 5.5. Once these parameters
have been added to the Shift block, if the user does not intend to change the default materials or their
temperatures, then VERA can be run using verarun. However, if the user would like to update the
materials and temperatures, then there are two options: (1) submit a job using verarun
vera_input_file.inp command and then immediately kill the job that was just submitted using the
command qdel jobid, or (2) run the react2xml executable by typing the following into the terminal:

30

/PATH/TO/VERA/INSTALL/bin/react2xml vera_input_filename.inp

An ex-core vera_input_filename.omn file will be output to the working directory. The user can then
scroll down to the [COMP] block to make any changes to the material, number densities, or the
temperatures for the appropriate detectors. The detector ID is provided in the comments within the input to
make it is easier for the user to identify the cells associated with a detector. By scrolling down to the
[TALLY] block, the user will see a list of tallies associated with the detectors set up in the VERA input. For
this example, see Listing 9 for the tallies automatically generated in the ex-core input file.

Listing 9. [TALLY] block automatically generated in the ex-core file.
[TALLY]

[TALLY][CELL detector_0_0]
cells detector_0_0
responses b10

[TALLY][CELL detector_0_2]
cells detector_0_2
responses b10

[TALLY][CELL detector_1_0]
cells detector_1_0
responses b10

[TALLY][CELL detector_1_2]
cells detector_1_2
responses b10

[TALLY][CELL detector_2_0]
cells detector_2_0
responses b10

[TALLY][CELL detector_2_2]
cells detector_2_2
responses b10

[TALLY][CELL detector_3_0]
cells detector_3_0
responses u235

[TALLY][CELL detector_4_0]
cells detector_4_0
responses u235

[TALLY][CELL detector_5_0]
cells detector_5_0
responses u235

detector_0_0 and detector_0_2 are associated with the lower and upper detector regions of PWR1.
detector_1_0 and detector_1_2 are associated with the lower and upper detector regions of PWR2
located at a radius of 116.39 cm and 45◦. detector_1_0 and detector_1_2 are associated with the
lower and upper detector regions of PWR2 located at a radius of 116.39 cm and 0◦. Next, detector_3_0

31

and detector_4_0 are associated with SRC1 detectors located at a 123 cm radius and at 135◦and 270◦,
respectively. Finally, detector_5_0 is associated with the SRC2 detector located at a 123 cm radius and at
225 ◦.

The next step can be prone to error, so it is highly recommended that this modified *.omn file be saved in a
separate folder so that it is not accidentally overwritten. Once a backup of this ex-core file has been
created, the next step is to run verarun again by typing in the input file name but this time with the *.xml
extension.

verarun vera_input_filename.xml

This will bypass the react2xml execution, and a new *.omn file with the default materials will not be
produced and override the modified *.omn file with the updated materials. After the execution of the
*.xml file, open the *.omn file and make sure that the density and temperature changes that were made
show up accurately and were not accidentally overwritten. The user can also check *.excore.xml to
ensure that the correct compositions and temperatures were indeed used in the calculation.

5.5 RUNNING VERA WITH AN EX-CORE FILE

Once the ex-core file has been set up correctly, the [SHIFT] block in the VERA input must be set up
correctly to account for the additional ex-core file. See Listing 10 for an example.

Listing 10. [SHIFT] block in VERA input for running ex-core calculations with an ex-core file.
[SHIFT]
Np 50e6
hybrid_tally_names flux_tally
hybrid_multiplier_names flux
output_adjoint true
num_blocks_i 10
num_blocks_j 10
!
! Name of the file produced from running excore2xml
excore_filename smr-detwell.excore.xml
!
vera_pressure_vessel true
!
! Same translation of the core from your ex-core file
core_translate -112.79 -112.79 0.0
bc_bnd_mesh reflect vacuum reflect vacuum vacuum vacuum
x_bnd_mesh 0.0 190
y_bnd_mesh 0.0 190
z_bnd_mesh -6.0 250
raytrace_levels 200.0

Np represents the total number of particles to be used in the Shift fixed source calculation.
hybrid_tally_names represents the name of the tally in the ex-core file that the user would like to
optimize in the hybrid calculation. If the user is interested in optimizing for the flux_tally shown in
Section 5.3, then that needs to be specified using the hybrid_tally_names. Note that the user can
optimize for multiple cell tallies. The hybrid_mulitplier_names should be set to flux since this is the

32

only option currently available to the user because Shift integrated in VERA cannot currently optimize for
other responses such as dose with CADIS. It can only optimize for flux.

If the user would like to plot the adjoint, then the output_adjoint option should be set to true. The user
can also change the default setting of num_blocks_i and num_blocks_j to lower or higher numbers so
that the Shift transport calculation runs on a lower or higher number of processors. Note that
num_blocks_i multiplied by num_blocks_j is the total number of processors used for the Shift
calculation. Next, the user must specify the name of the ex-core file using the excore_filename
parameter and append it with the *.excore.xml extension. This definition is necessary because VERA
will run a script that converts the ex-core file to an xml format which is then read by Shift to perform
transport on the ex-core geometry.

If the user is integrating all the geometry up to the reactor pressure vessel’s outer radius from the VERA
input, with the remainder of the geometry outside the pressure vessel defined in the ex-core file, then the
user must set the vera_pressure_vessel parameter to true. This is also a requirement for cases run
with the automated generation of the detector and bioshield. However, if the user is only integrating the
geometry up to the outer radius of the barrel from the VERA input and then defining all the geometry
outside the barrel using the ex-core file, then vera_pressure_vessel must be set to false.

The user must also align the origin in the VERA input with the origin in the ex-core file. Note that this was
done previously in the ex-core file using the translate card when integrating the VERA geometry using
the HOLE. It must be defined again here in the [SHIFT] block, and the translation remains the same. The
translation in the VERA input is provided using the core_translate parameter. This is another potential
user pitfall.

Next, the boundary conditions must be specified. The bc_bnd_mesh parameter allows the user to specify
the boundary conditions along the -x +x -y +y -z +z boundaries, in that order. In this example, the
boundary conditions are provided for a quarter core problem, so the boundary conditions are reflect
vacuum reflect vacuum vacuum vacuum. Next, the problem boundaries along x, y and z are provided
using the x_bnd_mesh, y_bnd_mesh, and z_bnd_mesh parameters. The user may provide the same
boundaries that were used for boundary box in the ex-core file here. Note that the user must define the full
geometry in the ex-core file even if they are running a quarter core geometry in VERA. Shift performs the
fixed-source transport on the full geometry. Finally, the user can specify a z-plane along which a raytrace
will be performed for plotting purposes using the raytrace_levels parameter. This will allow the user to
produce an image of the VERA geometry integrated with the ex-core geometry.

33

6. PRE- AND POST-PROCESSING INPUTS AND OUTPUTS

When setting up a geometry, the user should check to ensure that there are no geometry errors. A python
script has been set up for this purpose so that Omnibus modules associated with the geometry raytracing
can be loaded and then used to produce plots to check for errors.

6.1 CHECKING FOR GEOMETRY ERRORS DURING EX-CORE INPUT SETUP

It is important for analysts to view the geometry and check for any geometry errors while setting up the
ex-core geometry. Unfortunately, the only way to do this currently is to run a python script that generates
plots at different planes.

To run the script, a few changes must be made to the ex-core *.omn file from that discussed in previous
sections. Listing 11 provides an example showing how to set up an ex-core file for geometry visualization
and error checking. First, the [TALLY] and [COMP] blocks at the bottom of the input files must be
commented out or removed, and then the user must specify a comp:matid list at the beginning of the
ex-core file for each composition specified in the ex-core file (see an example below). Lines that are to be
commented out, modified, or added are highlighted in yellow. The first example shown of a simple SMR
ex-core file in Section 5.2 is modified here so that plots of the geometry can be obtained to check for any
errors before running it with VERA.

Next, the [UNIVERSE=core reactor] block must be commented out, and in its place, a new
[UNIVERSE=general reactor] must be defined. This step is necessary because the user is must
generate the geometry using the python script before running VERA. Therefore, the code does not have the
information required to plot the VERA geometry. In its place, a "fake core" is modeled which models a
cylinder up to the outer radius of the barrel or the outer radius of the reactor pressure vessel, depending on
the boundary up to which the VERA geometry is integrated. Finally, the user must remove or comment out
only the translate card for the [HOLE thecore] since this translate card is only aligning the VERA
geometry origin with the Shift ex-core origin.

Listing 11. Revised ex-core file for geometry visualization and error-checking.

! ==
! SIMPLE SMR EX-CORE REGION
! ==

[GEOMETRY]
global "excore"

! This replaces the [COMP] block that needs to be commented out or deleted
comp : matid
fake_core 0
void 1
concrete 2

! Reactor core from VERA input inserted into this universe needs to be
! commented out
! [UNIVERSE=core reactor]

! ==

35

! UNIVERSE: REACTOR - FAKE CORE DEFINITION FOR RAYTRACE
! ==

[UNIVERSE=general reactor]
boundary "rpv_outer "

! Reactor Pressure Vessel Outer Radius
[UNIVERSE][SHAPE=cyl rpv_outer]
radius 112.79
extents -6.0 240.0
origin 0 0 0
axis z

[UNIVERSE][CELL fake_core]
comp fake_core
shapes -rpv_outer

! -------------------------- UNIVERSE: EX-CORE -------------------------------

! **
! Define the problem boundary
[UNIVERSE=general excore]
boundary "box"

! boundary box
[UNIVERSE][SHAPE=cuboid box]
faces -190 190 -190 190 -6 250

! **
! Define the shapes (or surfaces in MCNP/KENO terminology)
! Vessel radius is 112.79, and all the surfaces outside the vessel are defined

! Shield
[UNIVERSE][SHAPE=cyl shield_id]
radius 120.4
extents -6.0 240.0
origin 0 0 0
axis z

[UNIVERSE][SHAPE=cyl shield_od]
radius 186.67
extents -6.0 240.0
origin 0 0 0
axis z

! **
! This HOLE is now filled with the new universe defined for the FAKE CORE.
! There is no need to translate the origin since VERA is not being run
! while running the check for geometry errors.
! **

[UNIVERSE][HOLE thecore]
fill reactor
! translate -112.79 -112.79 0.0

! Define cells

36

[UNIVERSE][CELL void_reg1]
comp void
shapes +thecore -shield_id

[UNIVERSE][CELL bioshield]
comp concrete
shapes +thecore +shield_id -shield_od

[UNIVERSE][CELL void_reg2]
comp void
shapes +thecore +shield_id +shield_od -box

! Comment out or delete [COMP] and [TALLY] blocks below

The next step is to run the *.omn excore file using the gg2xml executable,
/PATH/TO/VERA/INSTALL/bin/gg2xml, located in the bin folder with the VERA build.

/PATH/TO/VERA/INSTALL/bin/gg2xml excore_filename.omn

This will generate an excore_filename.gg.xml file. Note that at this step, if there are any input errors
that gg2xml can catch, they will be printed to the terminal. The user can read the errors on the terminal and
fix the input as necessary. Instead of typing in the entire path to point to the gg2xml executable, the user
can create a soft link by typing the following command into the terminal window:

ln -s /PATH/TO/VERA/INSTALL/bin/gg2xml

This will create a soft link to the gg2xml executable which can then be invoked by typing the following
command into the terminal window:

./gg2xml excore_filename.omn

Once the user has corrected all the input errors and the *.gg.xml file has been successfully generated, the
file can be used as an input to the python script, plot.py, which is used to generate the plots to view any
further geometry errors (see Listing 12). Note that the user must provide the correct
omnibus_gg_xml_filename at the top of the python script. Unfortunately, gg2xml will not catch all the
input errors in the input parsing step. Once the python script is run by typing the command below into the
terminal window, any additional geometry error messages will appear.

python plot.py

In addition to the error messages, a plot called plot1.png will be output in the working directory. Users
can modify this python script as they see fit.

All parts of the input that the user needs to define or for which the user needs to provide input are
highlighted in yellow. The lower parameter requires the user to provide the lower bounds of the (x, y, z)
axes for plotting purposes, and the upper parameter requires the user to provide the respective upper
bounds. This area will be raytraced by Omnibus to check for geometry errors. The sum of all the values in
the basis must add up to 1. If the user would like to generate a plot along a 45◦ angle, then the basis should
be (0.707107, 0.707107, 0).

37

Listing 12. Python script for geometry error-checking.
plot.py

import os
import shutil
import h5py as h5
import matplotlib.pyplot as plt
plt.switch_backend(’agg’)

from omnibus.raytrace.h5imager import Imager as H5Imager
from omnibus.raytrace.imager import Imager
from omnibus.formats.comp import load as load_comps
from omnibus.raytrace.colors import ColorMap
from omnibus.data import plot
from omnibus.raytrace.load import load_gg
from geometria import GG_Geometry

--
LOAD *.GG.XML FILE
--
USER TO SPECIFY THE INPUT BELOW

omnibus_gg_xml_filename = ’excore_filename.gg.xml’

--
PLOT ENTIRE EXCORE GEOMETRY
--

Load the *.gg.xml file
model = load_gg(omnibus_gg_xml_filename)

Look in the terminal window for more messages on the geometry error

imager = Imager(model.geometry,
lower=(-400, -400, 515),
upper=(400, 400, 515),
basis=(1,0,0),
max_pixels=1024)

imager.trace = ’cell’ # This can be set to âĂŸmatâĂŹ if you want to see materials
imager.plot()
imager.check_errors=True
fig = imager.plot(figsize=(20,20))

plt.savefig(’plot1.png’, format=’png’, dpi=600)

An example of the plot output from plot.py is shown in Figure 9.

Finding all the geometry errors is an iterative process. Once the user is confident that the input is correct,
the input that was added to the *.omn file to generate the *.gg.xml file can be commented out or deleted,
and the [COMP] and [TALLY] blocks can be added so that it will run through VERA. Note that there may
be outstanding geometry errors that will not be caught until the input is run through VERA with the VERA
core model integrated. However, most geometry errors should be found at this step with the plot.py
script. Note that it is necessary for the user to plot along different basis, upper and lower bounds so that
Omnibus will raytrace along multiple planes and directions to find geometry errors.

38

Figure 9. An example of a plot output from plot.py.

6.2 GENERATING PLOTS AFTER RUNNING VERA

There are different methods to extract plots and analyze data after running VERA. These tools are
discussed further in the following subsections.

6.2.1 Using VERAView To Examine Pin Adjoints

In addition to viewing vessel fluence, VERAView can be used to view the pin adjoints. These pin adjoints
indicate which pins contribute the most to a vessel or detector response. Figure 10 shows a VERAView
screen shot of the pin adjoints for an ex-core detector. The first step is to load the Shift HDF5 output file,
vera_output_filename.shift.h5. Note that the user is not opening the VERA output file,
vera_output_filename.h5. VERAView will load a 2D core view of the pin adjoints, an axial view as
well as the assembly view. The user can click on a specific assembly to view the pin adjoints in greater
detail. Shift currently only performs the adjoint calculation at the first statepoint and uses the same adjoint
to perform advanced variance reduction throughout the rest of the calculation for subsequent states. The
user can slide the Axial bar on the right-hand side to slide between different axial planes to view the
adjoint.

39

Figure 10. Pin adjoint plots generated with VERAView.

6.2.2 Custom Python Scripts

Once VERA finishes running successfully with the ex-core file, the user can use the scripts input.py and
plt_adj.py to view the adjoint flux. These scripts provide a basis to the user that can be expanded upon
to include additional plotting features.

In the input.py script (see Listing 13), the user must provide the name of the VERA input file without
any extensions. Then the user can plot and view the adjoint flux at various locations and provide the
zlevel, group number, and the plot file name using the plt_adj.plot_adjoint_flux function. The
imager and shift_file should be left as it is in the python script and should not be changed. The
zlevel in the example below is set to the same level as the raytrace_levels parameter in the [SHIFT]
VERA input. This allows the user to overlay the adjoint flux over the VERA geometry using the python
script. Note that the user can overlay the adjoint flux over the geometry of any axial plane
(raytrace_levels) but they need to bear in mind that the geometry being overlaid may not capture the
features of the axial plane that the adjoint flux represents. To view the total adjoint flux, call the

40

plt_adj.plot_tot_adj_flux function in the input.py script, as shown below. The plt_adj.py script
contains the functions that process the parameters specified in the input.py file. The user must ensure that
both the plt_adj.py and input.py python scripts are in the same working directory as the VERA
output. Next, the user can run the set of scripts by typing the following in the terminal:

python input.py

Once again, the user is encouraged to change and customize this script to suit their application. These
scripts serve as an example and form a basis for any python scripts the user would like use to produce plots.
The plt_adj.py script is not shown here, but it is available with the manual.

Listing 13. Python script for viewing the geometry and adjoint after running VERA.
input.py

import os
import h5py as h5
import matplotlib.pyplot as plt
plt.switch_backend(’agg’)

from omnibus.raytrace.h5imager import Imager as H5Imager
from omnibus.formats.comp import load as load_comps
from omnibus.raytrace.colors import ColorMap
from omnibus.data import plot

import plt_adj

--
USER TO SPECIFY THE INPUT NAME BELOW (WITHOUT THE *.SHIFT.H5 EXTENSION)

vera_input_filename = ’boc’

--

input_filename = plt_adj.input_file(vera_input_filename)
shift_file = plt_adj.load_shift_hdf5(vera_input_filename)
imager = plt_adj.load_imager(vera_input_filename)

Plot adjoint flux at various levels and groups (0 to 7)
plot_adjoint_flux(zlevel, group, filename)
plt_adj.plot_adjoint_flux(200, 0, imager, shift_file , ’adjFlux_g0’)
plt_adj.plot_adjoint_flux(200, 1, imager, shift_file , ’adjFlux_g1’)
plt_adj.plot_adjoint_flux(200, 2, imager, shift_file , ’adjFlux_g2’)
plt_adj.plot_adjoint_flux(200, 3, imager, shift_file , ’adjFlux_g3’)
plt_adj.plot_adjoint_flux(200, 4, imager, shift_file , ’adjFlux_g4’)
plt_adj.plot_adjoint_flux(200, 5, imager, shift_file , ’adjFlux_g5’)
plt_adj.plot_adjoint_flux(200, 6, imager, shift_file , ’adjFlux_g6’)
plt_adj.plot_adjoint_flux(200, 7, imager, shift_file , ’adjFlux_g7’)

Plot total adjoint flux
plt_adj.plot_tot_adj_flux(200, imager, shift_file , ’total_adjFlux’)

Once the script runs successfully, a folder called Plots is produced. If a folder called Plots already
exists, then it must be moved to a different location, renamed, or deleted. In the Plots folder, the user will

41

see three items: (1) output_filename.png which shows the integrated in-core and ex-core geometry, (2)
a GroupwiseAdjointFlux folder with plots of the groupwise adjoint flux, and (3) a TotalAdjointFlux
folder with a plot of the total adjoint flux.

Examples of the plots produced by running input.py are shown in Figure 11.

(a) In-core geometry integrated with ex-core geometry. (b) Total adjoint flux.

Figure 11. Integrated in-core and ex-core geometry with the adjoint flux overlaid on the geometry.

6.3 POST-PROCESSING CELL TALLIES AFTER RUNNING VERA

A user who is experienced in navigating through HDF5 files can look through the *.h5 VERA output or
the *.shift.h5 output to find the ex-core tallies named in the *.omn file. However, this can be
cumbersome for users not familiar with HDF5 files, so a python script has been created to facilitate a quick
method to pull the ex-core tally data into a text file. This python script is called collate_tally.py, and it
requires the user to type the following into the terminal window.

python collate_tally.py vera_output.h5

This will invoke the script to process the HDF5 output files, and it will print out the tally information in a
text file called tally.txt (see Listing 14 for an example). The details of the script are not shown in the
manual, but they are available for the user with access to VERA.

Listing 14. Python script for viewing the geometry and adjoint after running VERA.

###
R e s u l t s f o r d e t e c t o r _ t a l l y c e l l t a l l y from o u t p u t _ f i l e n a m e . h5 o u t p u t f i l e

Note : I f t h e c e l l volume i s 0 , t h e n t h e f l u x r e p o r t e d below i s volume i n t e g r a t e d . The u s e r must d i v i d e t h e f l u x by t h e c e l l
volume t o o b t a i n t h e volume−a v e r a g e d f l u x . I f t h e c e l l volume i s c a l c u l a t e d by S h i f t and i s p r i n t e d below , t h e n t h e f l u x i s
volume a v e r a g e d .

###

S t a t e %Power Exposure (EFPD) T a l l y Flux (∗) RE (%) D e t e c t o r Response RE (%) T o t a l Source S t r e n g t h (n / s) Volume (cm3)
1 0 . 0 1 0 . 0 0 1 .000000 e+12 0 . 0 2 1 .000000 e+07 0 . 1 0 4 .000000 e+14 0 .000000
2 5 . 2 0 0 . 0 0 8 .000000 e+14 0 . 0 5 3 .000000 e+14 0 . 0 5 4 .000000 e+18 0 .000000

The output prints out the power in percent for each state point in the calculation, the associated exposure in
effective full power days (EFPDs), the tally flux and its associated relative error in percent, the detector

42

response and its associated percent relative error, the total source strength in units of neutrons per second,
and the volume of the tally in cubic centimeters. If the cell volume is zero, then the flux reported under the
Tally Flux is volume integrated. Shift is unable to automatically calculate the cell volume because the
cell definition was complex, so the user must divide the Tally Flux by the volume of the cell (calculated
by the user) to obtain a volume-averaged flux. However, if there is a volume printed out in the output file,
then Shift is able to automatically calculate the volume and can divide the cell tally by the volume to
provide the user with the volume-averaged tally flux.

43

7. CONCLUSION

To conclude, this guide serves the purpose of helping the user set up an ex-core calculation using VERA,
guiding the user through an ex-core input setup, and providing the user with directions for post-processing
results after a calculation. Any feedback from users on this document or the workflow of VERA ex-core
calculations is much appreciated. This feedback can be provided through VERA User’s Group. The python
scripts provided with this user’s guide are meant to serve as the basis on which the user can build for their
specific applications.

45

8. REFERENCES

M. N. Avramova. CTF: A Thermal Hydraulic Sub-Channel Code for LWR Transient Analyses, User’s
Manual. Technical report, Pennsylvania State University Department of Nuclear Engineering, 2009.

B. Collins, S. Stimpson, B. Kelley, M. Young, B. Kochunas, A. Graham, E. Larsen, T. Downar, and
A. Godfrey. Stability and Accuracy of 3D Neutron Transport Simulation Using the 2D/1D Method in
MPACT. Journal of Computational Physics, 326:612–628, 2016.

E. E. Davidson, T. M. Pandya, A. T. Godfrey, and M. Asgari. Watts Bar I Ex-Core Analyses Using VERA.
In Proceedings of the 20th Topical Meeting of the Radiation Protection Shielding Division, Santa Fe,
NM, USA, 2018. American Nuclear Society.

E. E. Davidson, T. M. Pandya, K. E. Royston, T. M. Evans, A. T. Godfrey, Shane C. Henderson, Gary
Wolfram, and Joel M. Risner. Effect of Fission Source Spectrum on Monte Carlo Calculation of Ex-core
Quantities. In Proceedings of PHYSOR 2020: Transition to a Scalable Nuclear Future, Cambridge,
United Kingdom, 2020. American Nuclear Society.

S. Johnson, T. Evans, G. Davidson, S. Hamilton, T. Pandya, K. Royston, and E. Biondo. Omnibus User
Manual. Technical Report ORNL/TM-2018/1073, ORNL, TBD 2020.

S. Palmtag and A. T. Godfrey. VERA Common Input User Manual. Technical Report
CASL-U-2014-0014-002, CASL, February 2015.

T. Pandya, T. Evans, K. Royston, K. Clarno, B. Collins, S. Stimpson, and S. Henderson. VERAShift User’s
Manual. Technical Report CASL-U-2019-1921-000, CASL, January 2020.

T. M. Pandya, S. R. Johnson, T. M. Evans, G. G. Davidson, S. P. Hamilton, and A. T. Godfrey.
Implementation, Capabilities, and Benchmarking of Shift, a Massively Parallel Monte Carlo Radiation
Transport Code. Journal of Computational Physics, 308:239–272, 2016.

H. P. Smith, E. E. Davidson, A. T. Godfrey, and T. M. Pandya. An Analysis of Various Solution Strategies
and Perturbations on Inputs of the Reactor Shielding Problem. In Proceedings of the 20th Topical
Meeting of the Radiation Protection Shielding Division, Santa Fe, NM, USA, 2018. American Nuclear
Society.

J. A. Turner, K. Clarno, M. Sieger, R. Bartlett, B. Collins, R. Pawlowski, R. Schmidt, and R. Summers.
The Virtual Environment for Reactor Applications (VERA): Design and Architecture. Journal of
Computational Physics, 326:544–568, December 2016.

J. C. Wagner and A. Haghighat. Automated Variance Reduction of Monte Carlo Shielding Calculations
Using the Discrete Ordinates Adjoint Function. Nuclear Science and Engineering, 128(2):186–208,
1998.

47

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF INPUTS, OUTPUTS AND SCRIPTS
	ACRONYMS
	ACKNOWLEDGMENTS
	ABSTRACT
	INTRODUCTION
	RUNNING VERA USING VERARUN
	SETTING UP MPACT AND SHIFT PROCESSORS

	SHIFT DEFAULT PARAMETERS
	VESSEL FLUENCE CALCULATIONS
	OTHER EX-CORE CALCULATIONS
	SETTING UP THE OMNIBUS EX-CORE GEOMETRY
	A SIMPLE EX-CORE INPUT
	SMR EX-CORE INPUT WITH A DETECTOR
	AUTOMATED GENERATION OF THE BIOSHIELD AND EX-CORE DETECTORS
	RUNNING VERA WITH AN EX-CORE FILE

	PRE- AND POST-PROCESSING INPUTS AND OUTPUTS
	CHECKING FOR GEOMETRY ERRORS DURING EX-CORE INPUT SETUP
	GENERATING PLOTS AFTER RUNNING VERA
	Using VERAView To Examine Pin Adjoints
	Custom Python Scripts

	POST-PROCESSING CELL TALLIES AFTER RUNNING VERA

	CONCLUSION
	REFERENCES

